HYPERSONIC ENTRY AEROSHELL SHAPE OPTIMIZATION

John E. Theisinger®, Dr. Robert D. Braun®

WGraduate Research Assistant, Georgia | nstitute of Technology, 270 Ferst Drive, Atlanta, GA 30332-0150 USA,
Email: john_theisinger @ae.gatech.edu
() Associate Professor, Georgia I nstitute of Technology, 270 Ferst Drive, Atlanta, GA 30332-0150 USA,
Email: robert.braun@ae.gatech.edu

ABSTRACT technique is critical for effective shape design and
optimization.

Several different approaches to shape optimization are

explored to identify hypersonic aeroshell shapes that 1.2 Background and Motivation

will increase landed mass capability by maximizing

drag-area for a specified lift-to-drag ratio. The most Aeroshells are designed to deliver payloads safely

basic approach manipulates standard parameters through a planetary atmosphere, protecting the payload

associated with analytic aeroshell shapes like the from the high aerodynamic heating and loads

sphere-cone and ellipsled. More general approaches encountered during EDL. An aeroshell generally

manipulate the control points of a spline curve or consists of a forebody which faces the flow and a

surface. The parametric polynomial formulations of the backshell which completes the encapsulation of the

Bezier and B-spline curves and surfaces are employed payload. The specific shape of a particular aeroskell i

due to their desirable properties in shape design. driven by EDL performance requirements and

Hypersonic aerodynamic analyses are carried out using thermal/structural limitations. Four different aeroshell

Newtonian flow theory panel methods. An integrated shapes are shown in Fig. 1: the Viking-era Sighere-

optimization environment is created, and a variety of cone, the Mars Microprobe, the Aeroassist Flight

optimization methods are applied. In addition to a lift- Experiment (AFE), and a swept biconic design. This

to-drag ratio constraint, size constraints are imposed on diversity in configurations is a direct result of differing

the aeroshell, as determined by payload volume mission and flight systems requirements — that is, form

requirements and launch vehicle shroud size has followed function in every case.

restrictions. Static stability and center-of-gravity

placement required to achieve hypersonic trim are also

considered during optimization. An example case is

presented based on the aeroshell for the Mars Science

Laboratory mission.
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1. INTRODUCTION

Fig. 1. Various aeroshell shapes [1, 2, 3, 4]
1.1 Objective
In many entry, descent, and landing (EDL) missions, Fundamentally,CoA represents the amount of drag
aeroshell shapes are designed to achieve a specified lift- force that an aeroshell is capable of generating at a
to-drag ratio (/D) with a maximum drag-aresC4A). given free-stream condition D(d.). During the
Such aeroshells take advantage of increased capabilities hypersonic EDL phase, this drag force provides the
due to lift without sacrificing their ability to decelerate ~means to decelerate, implying th&A should be
safely and effectively prior to terminal descent and maximized for a given system masg)( The ballistic
landing. These aeroshell shapes can be determined coefficient is an aeroshell performance parameter that
using an integrated optimization environment which embaodies this principle, relating inertial and drag forces
performs shape design based on computation of asshownin Eqgn 1.
hypersonic aerodynamics.

Various methods of shape representation and B_CDA @)
manipulation exist, many born out of computer-aided
geometric design (CAGD) theory. Parametric spline
formulations have been shown to be very powerful for
shape design and optimization since complex shapes
can be generated with a relatively small number of
control points or design variables. Selection of the
appropriate shape representation and manipulation

A higher B (high mass per unit drag-area) causes EDL
events to occur at lower, denser portions of the
atmosphere, reducing landed elevation capability and
timeline margin. Additionally, peak dynamic pressure,
heat rate, and integrated heat load are all higher,r@ausi



an increase in the thermal and structural loads that the
entry system must be designed to accommodate.

Another important aeroshell performance parameter is
the L/D of the aeroshell. A body of revolution,
symmetric about its forward axis, will have BfD of
zero while flying at a Dangle of attack (AOA o). A
body of revolution flying at a non-zero AOA, or an
asymmetric body, however, can produce a non-zero
L/D. Motivations for achieving a non-zerd/D
aeroshell shape include:

* Torelax the allowable approach navigation
requirements (i.e., enabling a larger entry corridor).

* To reduce the deceleration loads.

* To mitigate atmospheric density and wind
uncertainties.

« Toimprove landing accuracy.

* Toincrease parachute deployment altitude,
enabling a higher surface elevation landing site or
adding timeline margin.

« To execute a plane change or to provide a
crossrange capability.

While a non-zerd/D has distinct advantages, care must

be taken not to shape the aeroshell such Lthat is

created at the expense of reducidgA and therefore
increasing. This risk can be seen more clearly in Eqgn.

2 wherel/D is written in terms 0€pA.
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With these principles in mind, an ideal aeroshedpe
would achieve a specifield D, while maximizingCpA
and thereby minimizin@. This enables the aeroshell to
perform as needed while sacrificing as little citi
drag-area as possible — preserving its capability t
deliver a payload to the planetary surface safelg a
effectively.

2.METHODOLOGY

This work is divided into three main components:
hypersonic aerodynamic analysis, shape represemtati
and manipulation, and shape optimization. The
following sections detail each component and discus
how these components were integrated to create the
capability to perform aeroshell shape optimization.

2.1 Hyper sonic Aer odynamics

The Newtonian impact model for hypersonic flow
allows aerodynamics to be determined from shape
alone, independent of any flow parameters [5]. The
coefficient of pressure() is computed based on the
orientation of the surface, indicated by the unitface
normal vector 1f), relative to the free-stream flow
velocity (V.,), as written in Eqn. 3.

VOO

2
C,=2 =T
<)

For a complex geometry, the entire body surfacebean
divided into panels and th&, can be determined for
each of these panels by knowing only their assediat
normal vector (see Egn. 3). With the pressure
distribution determined over the entire body, thecés
and moments can be resolved through integratiom ove
the surface area.

®)

Routines were coded in MATLAB to determine the
aerodynamic parameters for a given shape. A matrix,
containing the points that represent the aeroselpe

is input, along with AOA. Based on these inputs, a
surface of panels is created. The vectors alongithes

of the panels are used to determine the panel'salor
vector using the cross product operation, and then

C, for the panel is computed via Eqn. 3. Finally, the
aerodynamic forces and moments are determined using
the resulting pressure distribution and panel areas
Sideslip is not modeled; aeroshells are only althwe
vary in AOA. In order to maintain trim and stalylit
outside of the AOA plane, aeroshells are requicebet
symmetric across the AOA plane, causing the rolling
and yawing moments to be zero for all angles afcitt

In locating the center of gravity (CG) of the admal a
uniform packaging density is assumed, which
effectively places the CG at the volume centroidhef
aeroshell. The CG offset required to trim an aesthsh
determined based on the computed forces and moments
about this centroid. Because this CG offset is e

by shifting the payload, it is generally best tepehe

CG offset as small as possible to permit reasonable
packaging configurations.

To be statically stable, an aeroshell must expeeiemn
restoring moment when disturbed from the trim AOA
(i.e., dC/da < 0). Computationally, static stability is
assessed using a finite difference calculation haf t
moments about the offset CG to calculate this
derivative. To maximize static stability, this dexiive
must be as large a negative number as possible.

It should be noted that the scope of this studys duos
encompass aerothermodynamic considerations that als
affect aeroshell design. This includes the blunbhthe
aeroshell nose and shoulder that would be required
order to reduce localized heating. Inviscid Newaoni
flow theory is most appropriate in the design afri)
hypersonic bodies, for which pressure drag domsate
over viscous drag. Additionally, while modified
Newtonian flow theory offers improvements in the
accuracy of computed hypersonic aerodynamics for
blunt bodies, the inclusion @, m.x as parameter would
simply scale the results uniformly, resulting ie ttame



optimized shape with different absolute values tfar
aerodynamic parameters. Straight Newtonian theory
(Comax = 2) has thus been used here.

2.2 Shape Representation and M anipulation
2.2.1 Analytic Shapes

Analytic shapes offer the ability to define an abwl
shape in terms of a few geometric parameters, neguc
the number of design variables for optimization levhi
allowing for smooth, manufacturable, and realistic
shapes to be designed and analyzed. The main
drawback to this approach is that aeroshell shapes
inherently restricted to a certain family, gredtgiting

the variety and generality of possible designs. Two
analytic shape families are explored in this wdhe
sphere-cone and the ellipsled.

The sphere-cone is parameterized in terms of four
design variables: the nose radiug),(cone angle ),
maximum diameter), and the AOA ¢), as shown in
Fig. 2. A representative sphere-cone aeroshell itsth
Newtonian pressure distribution is also shown iis th
figure.

Fig. EfSphere-cone aeroshell shape

The ellipsled is an analytic aeroshell shape coegbas
two half-ellipsoids with a cylindrical backshellt is
parameterized in terms of six design variables:ttie
nose radiusr( upe), bottom nose radius jone), Width
(w), nose lengthl(,), body length I{y.qy), and the AOA
(o). These parameters are depicted in Fig. 3.
representative ellipsled aeroshell is also showth thie
associated Newtonian pressure distribution in this
figure.

A

Fig. 3. Ellipsled aeroshell shape

2.2.2 Surfaces of Revolution

To expand the range of possible shapes, forms with
increasing levels of geometric control are impletadn
The first improvement is to examine aeroshells
represented as surfaces of revolution (SORs). Aal ax
profile is first created from a series of contrairgs,
which then define a curve based on a chosen
representation. That axial profile is rotated abthe
centerline to form an axisymmetric surface. While
SORs can be used to represent analytic shapearthat
axisymmetric, such as the sphere-cone, they alew al

a broad range of other, non-analytic shapes. The
limitation of the SOR approach is that all shapes
generated are axisymmetric.

Each SOR representation generates an axial profile
based on the positioning of control points. Thetan
points, along with the AOA, are the design variable
used for shape optimization. The control points ban
allowed to vary with either one or two degrees of
freedom (1-DOF or 2-DOF), dictating the number of
design variables. For the 1-DOF case, the axial
positions of the control points are fixed to a eros
section and the only DOF for each point is the akdi
direction. This arrangement is shown in Fig. 4.

s
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Fig. 4. 1-DOF control point profile

In the 2-DOF case, the control points are alsonadtb

to vary axially, but only within defined bounds. i§h
limited range of motion prevents control pointsnfro
crossing and producing twisted shapes. The 2-DOF
approach allows for a wider variety of axial prei
increasing the size of the design space.
arrangement is shown in Fig. 5.

® : : : :
Fig. 5. 2-DOF control point profile

This

Note that as shown in these figures, either cagpaines
a completely fixed point at the nose of the SOR and
axially-fixed point at the end of the SOR. This &nes
the generation of a closed body with a specifiedtie.

Once control points are positioned, a specific eurv
representation describes the SOR profile. Several
different methods for curve representations were



investigated: the direct-mesh, Bezier curve, and B-
spline curve representations.

The most basic method for generating axial profdes
direct-mesh approach. The profile is represented by
linear interpolation of the control points, as siitated in
Fig. 6.

Fig. 6. 2-DOF direct-mesh profile and SOR

The direct-mesh SOR is an intuitive choice becahse
profile interpolates the control points. Howeveneo
disadvantage of this approach is that the linear
interpolation does not result in smooth aeroshell
profiles, which may be undesirable for shape deaigh
optimization. In order to approximate a smooth ibepf

a large number of control points is needed, a
circumstance  which  becomes  computationally
burdensome for optimization routines. This faceting
along the profile is apparent in Fig. 6. In ordematlow

for smooth profiles, without adding a large numbér
control points, a more general curve representason
required.

To expand the options for representing aeroshell
geometries, it is advantageous to model the axdlle
using a curve form which is smooth and continuous.
Additionally, it is preferable to use a profile whiis
described in the form of a function. The equatifors
curves can be expressed explicitly or implicitlyt ithe
preferred representation for numerical computaitian

the parametric form. A parametric curve is représgn
in vector form as in Egn. 4.

Clu)= [x{u) y{u) 2u)]"

The parameteu is bounded by, andun,. Because
they have the ability to represent bounded andedlos
curves, parametric curves avoid many of the problem
associated with the explicit and implicit forms.

(4)

Bezier curves are one formulation of parametric/esir
that are defined by weighting the given controln®i
with parametric basis functions [6]. The first aladt
control points are interpolated by the curve, witiie
intermediate points are approximated. Additionathg
ends of the Bezier curve are tangent to the finst last

legs of the control polygon formed by the control
points. A Bezier curve withn¢1) control points is
defined by a polynomial of degre® calculated using
Eqn. 5.

SORDILHO ®

Here, 0<u < 1, whereC(u) is a point on the curve and
P, is the vector location of a control poi,(u) are the
n"-degree Bernstein polynomials which serve as the
blending functions that weight the influence of keac
control point. These basis functions are calculaedg
Eqn. 6.

Bn(U) = E(%y”i 1-u)™ (6)

An advantage of using the Bezier formulation is the
convex hull property, which ensures that the cuwile

lie entirely within the polygon created by the coht
points. Additionally, the variation-diminishing erty
dictates the maximum amount of curve oscillation
within the convex hull. Given these two propertite
designer can readily predict the shape of a cuased
on its control polygon.

Because the degree of a Bezier curve is direatkeli

to the number of control points, profiles with many
control points require higher-order curves and bexo
costly to evaluate. This trouble is avoided by trep
composite curves from several lower-order curves.

Fig. 7. 2-DOF Bezier curve profile and SOR

In this work, cubic Bezier curves were used to nhode
the SORs since cubic curves offer a good degree of
flexibility with low computational cost. In orderot
maintain continuity between two curves, the endmbn
point of the first curve and the starting controlirm of

the second curve must be coincident. Furthermare, t
maintain a smooth transition, continuity of slope i
required at this junction. This second conditioquiees
that the coincident control vertex and the conprahts

on either side be co-linear, as illustrated in Fidor a



composite cubic Bezier curve profile. The SOR
generated using this profile is also shown in Fig.

In terms of programming and manipulating continuous
composite Bezier curves, the requirement of caaline
control points becomes tedious as the number dfalon
points increases. Another limitation of the Bezarve
formulation is that changes to individual controlings
impact the entire curve (i.e., have global impagy).
perform local shape design, it is helpful to empboy
curve representation in which changes to an indalid
control point only influence a limited portion offiet
curve.

The B-spline is another parametric curve formulatio
which is actually a generalization of the Bezierveu
formulation. As such, B-splines share the same
desirable properties — particularly the convex-tant
variation-diminishing  properties.  The  B-spline
formulation is more complicated than the Bezienhwi
the introduction of knots, which essentially reprs
the parameter values at which composite curves
connect. In order to maintain a closed-forebody
aeroshell with a defined length, these knots cafixed
such that the first and last control points areripplated
and the curve is tangent to the first and last efgthe
control polygon — similar to the Bezier formulation
This is achieved though multiplicity in knot valuas
the first and last control vertices.

Unlike the Bezier formulation, the degree of a Hirsp
curve is not strictly linked to the number of canhtr
points. However, the degree is limited by the nundfe
control points as follows:n1) control points define a
polynomial of degreekl), with k-1) < (n+1). Whenk

= (n+1), the B-spline formulation reduces to the Bezier
formulation. The parametric equation for a B-spliae
given by Egn 7.

C(U):Z P Ni,k(u)

i=0

)

Here, 0< U < Unax @andN;x(u) are the B-spline basis
functions, given by the recursive definition in E&n

o N; 1 () _ Niaica(u)
Ni’k(u)—(u ti)ti+k_1_ti +(ti+k U) toe oy
(8)
1Lt <ust
WhereNiiz{O Iotherwiégl}

The values of the knots, are stored in a knot vector.
B-splines offer local control since they are essdgt
composed of composite curves, within which the
control points are limited to influence. Additiohal
continuity between composite curves is now autarnati

and no longer needs to be explicitly handled thhoting
manipulation of control points. Specifically, cubi:
splines are curvature continuous.

2.2.3 Spline Surfaces

While the SOR representation of aeroshell geongetrie
offers significantly more options for shape desiban
analytic shapes, all aeroshell shapes will be
axisymmetric. In order to allow asymmetric aerokhel
shapes (across the AOA plane), a general splifacgur
representation is required.

The parametric curve theory previously discussed is
directly extensible to bi-parametric surface theory
Considering the advantages of the B-spline fornumat
noted when designing with parametric curves, a bi-
parametric B-spline surface formulation was selcte
for implementation. These advantages include tloe fa
that the number of control points is independenthef
degree of the curve, and maintaining continuitysioet
require explicit consideration of control point
placement. These advantages apply in both parametri

directions. A general bi-parametric surface is
represented by Eqn 9.
Sl w) = [x{uw) yu,w) Zuw)l
-y ©)

> PiBk (WB; (W)

0 j

o

Here,Unin < U < Upayx aNdWnin < W < Wnae Analogous to
the B-spline curve profile, the B-spline surface
employed here is formulated to be clamped at iteed
and has a uniform knot vector.

Shifting from a SOR to a B-spline surface formwati
introduces several additional considerations. Fitst
control points defining the surface must each nawv b
confined to a three-dimensional range of coordmate
order to prevent twisted shapes from being gengrate
This is a natural extension of the axial boundseuiaon
the control points used to generate axial profiteshe
SORs. A cylindrical coordinate representation st
position B-spline surface control points which exte
radially from the apex of the aeroshell forebody to
generate convex profiles. A B-spline surface isef@e
generated by multiple, independently-defined axial
profiles rather than a single profile as in the S€aRe.
The edge control points of the control mesh muso al
be confined to a single plane so that the generated
aeroshell forebody will have a planar back-faceisTh
planar back-face was generated naturally by the SOR
representation. The cylindrical coordinate
representation enables the size constraint of auleir
envelope to be applied naturally as a side comstrai
(i.e., maximum radius) on control point radial piosis.
Thus, the constraint on aeroshell packaging within
launch vehicle shroud can easily be accommodated vi



the cylindrical coordinate representation. An aeuit
B-spline surface generated based on these cortstigin
shown in Fig. 8.

. '\

\

Fig. 8. B-spline surface front, oblique, and sitans
2.3 Optimization

Optimization was carried out using a variety of
techniques. The objective of the optimization is to
maximize the aeroshellpA while achieving a specified
L/D. The design variables are the locations of the
control points of the B-spline curve or surface dmel
AOA. The range of possible solutions is limited by
dimensional and volumetric constraints. Additiopall
terms that represent the CG offset and staticlgialie
added to the objective function to minimize the CG
offset required for static trim and maximize thatist
stability of the aeroshell.

A suitable optimization algorithm must be capabfe o
exploring the large and complex design space that i
likely to be highly nonlinear. Because aerodynamic
analyses are rapid, a genetic algorithm (GA) isdaal

candidate optimizer for this problem. Genetic
algorithms are in the family of zeroth-order
optimization techniques in which the search for the
optimum does not rely on the calculation of derixes.

The main advantage of GAs is that they are abfentb

a global optimal solution for complex design space
topologies with many local optima, while gradient-
based methods may get stuck in any one of a nuoiber
local optima. Constraints are applied to GAs thioug
the use of penalty functions. Penalties are apphetie
fithess values for solutions lying outside of teadible
solution space. In this analysis, the feasible giesi
space is defined by the geometric constraints ef th
aeroshell, including the size and volume limits wasdl

as the required hypersonldD. Side constraints are
placed on the design variables to limit their rangad
obtain realistic aeroshell shapes from the splineve
and surface formulations.

Although GAs are capable of searching the entire
solution space to find a global optimum, there are
difficulties associated with determining the exact
location of the maximum because genetic algorithms
operate randomly and over a discretized designespac
This problem can be solved as a hybrid optimization
problem by pairing the GA with a gradient-based
algorithm, such as the sequential quadratic

programming (SQP) or method of feasible directions
(MOFD) techniques. Gradient-based methods allow
close convergence on a single-valued optimum swiuti

The Phoenix Integration ModelCenter software isduse
to create the environment for aeroshell shape
optimization. The built-in optimizer modules areeds
along with MATLAB modules that were developed to
perform shape generation and aerodynamic analyses.
Once the parameters are defined for the optimizatio
modules, and all input and output variables are
appropriately linked, the hybrid optimizer can be
executed. Due to the stochastic nature of the GA,
multiple runs are performed in order to convergéon
the optimum aeroshell shape.

3. VALIDATION

Validation of the tools within the optimization
environment was performed by using shape
optimization for a body with fixed length and volam
Based on supersonic slender body theory, the drag
coefficient is independent of Mach number if thelpo
has a pointed nose and ends in a cylindrical poffi.
The drag is minimized if its area distribution,pofile,

is that of a von Karman ogive. Given a base areh an
length, this profile can be determined. Comparisba
body optimized for minimum drag to the von Karman
ogive quantifies the performance of the optimizatio
environment.
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Fig. 9. Comparison of drag-minimized body profite t
von Karman ogive profile

The profile of a 15sharp cone was generated using a
B-spline curve. Starting with this profile, the mpizer
was programmed to minimiz€pA, subject to a fixed
volume and length, by varying the radial positidn o
axially-fixed control points. The length and thesba
area of the optimized shape then uniquely defined a
analytic von Karman ogive profile. The optimized
profile is compared to the resulting von Karmanvegi
profile in Fig. 9, showing that the integrated
optimization environment performed well by rapidly



designing a B-spline profile that very closely niegs
the profile of the von Karman ogive.

4. EXAMPLE APPLICATION

The Mars Science Laboratory (MSL) aeroshell was
chosen as a baseline with which to explore the
capabilities developed in this work. Packaging Bl
performance constraints were derived from published
MSL geometry and mission requirements [8].

Parameter Value
CoA 25.56 m
(CrA),, -12.75 nilrad
CG offset 12.63cm
Merit, f 25.67
Fig. 10. Analytic approximation to the MSL aeroshel
Orim = -15.5

An analytic, MSL-derived aeroshell is shown in Fi§.
along with parameters computed from the hypersonic
aerodynamic analysis. It has a &phere-cone forebody
with a conical backshell, designed to fly at a zene
AOA, thereby producing ah/D of 0.24. There is a
maximum-diameter constraint of 4.5 m dictated by th
diameter of the launch vehicle fairing and the sizthe
integration and test facilities at the Jet Propulsi
Laboratory. An equivalent aeroshell volume
requirement of approximately 18°nwas determined
from the present MSL design. A maximum-length
constraint was determined based on the length ef th
MSL aeroshell, with a forebody length of
approximately 0.75 m and a backshell length of
approximately 2 m. Thus, an optimized aeroshell is
required to fit within a 4.5-m diameter by 2.75-mgth
cylinder, have a volume of 18%mand achieve ah/D
of 0.24. All of these constraints are to be metlevhi
maximizing a multi-objective merit function compets
of a weighted sum dEpA and terms to represent static
stability and CG offset as shown in Eqn. 10.
f =w, [Cp A-w, [[C,Al), -w, [CGoffset|  (10)
Thew; terms are the weights used to achieve a certain
design objective. For this example, the weightsevest
equal for each term in the merit function, aftectea
objective was scaled so that its contribution t rtierit
function was of the same order of magnitude. Two
different shape representations were explored:ccBbi

spline curve profiles to generate SORs and bi-c&bic
spline surfaces.

The cubic B-spline curve profile used here is dedibby

15 geometric variables, which, including AOA, gi\es
total of 16 design variables for a given aeroskkdipe.
There are five 2-DOF control points and a sixth QD
control point that defines the forebody-backshell
interface. The aeroshell radius, forebody length,
backshell length, and backshell angle are the dthar
geometric design variables. One resulting design is
shown in Fig. 11.

Parameter % Change
CpA +4.70%
(CA, +12.90%
CG offset -20.60%
Merit, f +8.46%

Fig. 11. B-spline SOR aeroshell,, = -14.8

This result highlights the fundamental trade betwee
drag and stability in aeroshell shape design. Gk is
slightly larger than that of the analytic aeroshélle to

an increase in bluntness of the forebody. Howethés,
increase in drag-area comes at the expense ot stati
stability (recall that to maximize static stabilitthis
derivative must be as large a negative number as
possible). An additional advantage of this non-gial
shape is that the required CG offset is smallen that
required for the analytic aeroshell since the unt
forebody produces smaller pitching moments.

Parameter % Change
ChA +3.15%
(CHAD, +12.31%
CG offset -99.63%
Merit, f +46.08%

Fig. 12. B-spline surface aeroshel, = -13.6

In the treatment of bi-cubic B-spline surfaces, toan
point profiles are defined at equal angular intkxva
radiating from an apex that is positioned verticall



along the axis of symmetry. The resulting shape is
symmetric across the AOA plane to prevent anyrglli

or yawing moments, but it is, in general, asymraetri
across the horizontal plane. For radial profileacptl
45 apart with six control points along each profile,
there are a total of 40 design variables after egity
constraints are taken into account. This tally eign
variables also includes the AOA, backshell length,
backshell angle, apex location, and forebody length
One resulting design is shown in Fig. 12.

Once again, the fundamental trade between drag and

stability is evident as drag-area has been inccease
the expense of static stability. While this aerdishe
shows similar trends to that of the SOR aerositied,
optimizer has exploited one capability of the
asymmetric forebody. The forebody volume has been
shifted off the centerline, enabling this aeroshell
achieve static trim with very little CG offset. Mothat
while the packaging volume has been kept constiaat,
“quality” of packaging volume should be considered
here since this shallow backshell might prohibitaie
internal payload configurations.

5. CONCLUSIONS AND FUTURE WORK

A capability to perform aeroshell shape optimizatio

optimal aeroshell shape. The combination of
optimization algorithms improves the user’'s ability
avoid local optima by searching randomly over the
entire design space. After deriving design constsai
based on the MSL mission, aeroshell concepts were
obtained that offer improved drag, stability and CG
placement relative to the analytic’ &phere-cone which
has been employed by all U.S. robotic Mars missions
The assessment of these aeroshell shapes alsd serve
highlight the fundamental trade between drag and
stability.

The natural progression for this work is to extehel
options for shape representation and manipulatmon t
rational spline forms, such as non-uniform ratioBal
spline (NURBS). This would enable the optimizer to
explore quadric surfaces and conic profiles with an
exact representation. Additionally, because Neveatoni
flow theory is only applicable to concave designs,
clever methods need to be implemented to enforiz# st
concavity for the spline SOR and general spline
surfaces. Due to the convex hull and variation-
diminishing properties of these spline formulations
enforcing concavity can be achieved by generating a
convex control polygon or mesh. Furthermore, the
addition of aerothermodynamic constraints and
considerations for packaging efficiency will addther

based on hypersonic aerodynamics has been developed design realism, while thermal protection systeningiz

Several different methods for shape representatiah
manipulation have been investigated, including wial
and synthetic shapes. The possible geometry oftamal
shapes is limited to certain families of shapese Th
direct-mesh representation increases the flexibiit
aeroshell designs but requires a large number mif@o
points to approximate a smooth body. Synthetic, or
spline, curve and surface formulations are used to
improve modeling of the aeroshell shapes becawse th
allow a large diversity of smooth-bodied shapeslavhi
maintaining a relatively low number of control pizin

or design variables, for optimization.

Two different types of synthetic curve formulations
were considered: Bezier and B-spline. The B-spline
formulation was found to be superior to the comigosi
Bezier formulation. In order to maintain continuity
between composite Bezier curves or surfaces, the
coincident and adjacent control points are constxhio
maintain certain spatial relationships. Maintainthgse
continuity conditions becomes cumbersome, but is
automatic when using the B-spline formulation. Bie
spline curve and surface formulations, while more
complex in their underlying mathematics, are superi
to the Bezier formulations because they do not
explicitly require complex continuity constrainfBhis
feature allows the aeroshell shape generation and
analysis codes to be more flexible in optimization.

A hybrid optimization routine that combines a GAlan
gradient-based algorithm was used to determine the

and structural mass estimation will serve to asfess
impact of aeroshell shape on total system massov&ar
multi-objective  and multi-disciplinary ~ design
optimization techniques will be applied to this fpem

to identify aeroshell configurations that are omtim
from the stand-point of an overall EDL system and
architecture.
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